- левый аннулятор
- Mathematics: left annihilating
Универсальный русско-английский словарь. Академик.ру. 2011.
Универсальный русско-английский словарь. Академик.ру. 2011.
АННУЛЯТОР — левый множества X в R множество всех таких элементов уиз Л, что Здесь R кольцо, или полугруппа (или, вообще, группоид) с нулем. Аналогично определяется правый А. множества это есть множество Двусторонний А. множества Xесть множество В… … Математическая энциклопедия
РИККАРТОВО КОЛЬЦО — левое, л е в о е РР кольцо, кольцо, в к ром левый аннулятор любого элемента порождается идемпотентом (симметричным образом определяются п р а в ы е Р. к.). Р. к. характеризуются проективностью всех главных левых (правых) идеалов. Риккартовыми… … Математическая энциклопедия
ДУАЛЬНАЯ АЛГЕБРА — топологическая алгебра, в к рой для любого замкнутого левого (соответственно правого) идеала I левый аннулятор правого (соответственно правый аннулятор левого) аннулятора идеала совпадает с I. Наибольший интерес представляют вопросы реализации Д … Математическая энциклопедия
РЕШЕТКА — с т р у к т у р а, частично упорядоченное множество, в к ром каждое двухэлементное подмножество имеет как точную верхнюю, так и точную нижнюю грани. Отсюда вытекает существование этих граней для всякого непустого конечного подмножества. П р и м е … Математическая энциклопедия
КВАЗИФРОБЕНИУСОВО КОЛЬЦО — QF к ольцо, артиново кольцо (слева и справа), удовлетворяющее аннуляторным условиям: для каждого левого (правого) идеала L(Н)(см. Аннулятор). Артиново слева кольцо, удовлетворяющее лишь одному из аннуляторных условий, может не быть К. к. Интерес… … Математическая энциклопедия
РЕГУЛЯРНОЕ КОЛЬЦО — (в смысле Неймана) ассоциативное кольцо (обычно с единицей), в к ром уравнение разрешимо для любого а. Следующие свойства ассоциативного кольца R с единицей равносильны: а) R есть Р. к.; б) каждый главный левый идеал кольца R порождается… … Математическая энциклопедия
ФРОБЕНИУСОВА АЛГЕБРА — конечномерная алгебра Rнад полем Ртакая, что левые R модули . и Ноm р (R, Р)изоморфны. На языке представлении это означает эквивалентность правого и левого регулярных представлений. Всякая групповая алгебра конечной группы над полем является Ф. а … Математическая энциклопедия